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Strong k-connectivity in digraphs and random digraphs.

1 SUMMARY

This paper concerns an extension of the strong connectivity notion

in directed graphs. A digraph D is k-strongly connected if, for each

x,y vertices of D, there exist > k vertex disjoint paths from x to y and

also > k vertex disjoint paths from y to x. A k-strong block of a digraph

D is a maximal k-strongly connected subgraph of D. We show here how many

results about the k-blocks in undirected graphs extend to k-strong blocks in

digraphs. (Separation lemma, overlapping of k-strong blocks, number of them,

sec [MATULA, 78].) We prove, for example, that the maximum number of

k-strong blocks for all k > 1 in any n-vertex graph is L(2n-l)/3J. We

also prove that two k-strong blocks cannot have more than k-l vertices in

cornon. We furthermore present results bounding the cardinality of the big-

gest k-strong block in random digraphs of the D model. We show here thatn,p

the cardinality of the biggest k-strong block is > n - log n with probability

-c (k)½-k) cl(k)> 1 -n for p > c and c (k) > 2k + 4. We also show that if

> c(k) locrn with c(k) > 16k 3 then the digraph D is k-strongly con-
n n,p

nected with very high probability (> 1 1 with d' (k) > 1). This work
n d' (k)

generalizes previous work of [REIF, SPIRAKIS, 81] on random undirected

graphs.

2 INTRODUCTION

A di graph D = (V,E) consists of a finite nonempty set V of Vertices

together with a prescribed subset E of V x V - {(u,u):'ucV} (set of directed

edges). (We allow no loops neither multiple edges.) A digraph D is
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k-strong. l connected if, for each xy verticesofD, there exist > k vertex

disjoint paths from x to y and also > k vertex disjoint paths from y to x.

D has strong connectivity k(D) a k if D is k-strongly connected but not

K + 1 - strongly connected. A k-strong bKock of a digraph D is a maximal

k-strongly connected subgraph of D. A k-strong block is triviaZ if it

has only one vertex. We extend here the definitions of [MATULA, 78]

for k-connectivity and k-blocks in digraphs in a natural way. k-strong con-

nectivity seems to be an interesting property of a graph, in addition to

being a natural extension of a mathematical structure. In [KLEINROCK, 72]

it is related to message flow in computer networks. The so-called associa-

tion graphs used in sociology and data cluster analysis may use the theory

of strong k-connectivity ([MATULA, 77], [JARDINE, SIBSON, 71]). We give

here alternative characterization theorems of the k-strong blocks. We 4
prove various structural properties of k-strong blocks, namely limited

overlap, the k-strong block separation lemma (providing also an O(n4 )

algorithm for finding all k-strong blocks in an n-vertex digraph) and we pro-

vide an achievable upper bound on the number of k-strong blocks for all

k > 1 in any n-vertex graph. (This bound is equal to L(2n-1)./3J.) All

these results are Coneralizations and extensi'-.s of the corresponding results

of [MATULA, 78] on k-blocks in undirected graphs.

We also examin3 k-strong connectivity in the model D of randomn,p

digraphs, defined precisely as follows: For 0 < p 1 and n >0 let Dn,p

be a random variable whose values are digraphs on the vertex set {l,2,...,n}.

If e = (u,v) and u,v are vertices, then Prob{e is an edgel = p and these

probabilities are independent for different ordered pairs e. Ex:_enclinq the
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previous undirected graph results of [ERDOS, RENYI, 60] and [KARP, TARJAN,

80] for k= 1,2 and [REIF, SPIRAKIS, 81] for general k in undirected

graphs, we prove that for each constant k >0 and any £ (0 < £ < 1) and

a > 1 there is a c(k,a,c ) > 0 such that the random digraph D with
n,p

p > £ has a k-strong block of cardinality > c-n with probability at least
-an

1- e We also show that for any g(n) n o(n) there are constants

c(k) > 4k and d(k) > 2 such that the size of the biggest k-strong block is

> n - g(n) with probability I 1 - (log n)/nd(k) for p > c(k) (log n)/n

An immediate corollary of that is that D is almost surely k-strongly
n~p

connected for such high values of p. Finally, we prove that for any

g(n) = o(n) there is a constant c (k) = max(3, c (k)) and a function

t(n) > (c (k) (log n))/g(n) such that if p I t(n)/n then the size of the

biggest k-strong block is > n - g(n) with probability > 1 t (n g(n

e (n)g(n)
+1 as n 4 •. An immediate corollary of that is that D with p > (c (k))n/nn,p 1

has an n-log n size k-strong block with probability > 1 - n-c 1(k)+l

Similar results were proved for undirected graphs in [REIF, SPIRAKIS, 81].

3 PROPERTIES OF k-STRONG BLOCKS

Proposition 1 If D is a digraph and G is the undirected version of C, then

k(D) < k(G) < 2.k(D), where k(G) is the connectivity of G.

Proof By Menger's theorem an undirected graph is k-connected if every pair I

of points is joined by at leait k vertex-disjoint paths.

Proposition 2 Each ic-ýitrong block has at least k vertices or it is trivial.

I.



Proof Easy by proposition 1 and the corresponding property of undirected

k-blocks (see [MATULA, 78]).

Lemma 1 The minimum number of vertices separating vertex s from vertex t

in the direction s to t, is the maximum number of vertex disjoint s to t

paths.

For the proof, see the Appendix. It is a modification of Dirac's proof to

Menger's theorem.

Theorem 1 The digraph D is k-strongly connected if for every vertex x

and for every vertex y, there are vertex cuts from x to y and from y to x of

size at least k.

Proof By Lemma 1 and the definition of k-strong connectivity.

Theorem 2 Let D bc a k-strongly connected digraph and let x be a single

vertex graph with no edges. Let v , ... , vk be k distinct vertices of D.1

Construct the digraph D' which has vertex set consisting of vertices

(D) u fx} and edge set the union of the edge set of D and {(v. ,x), (x,v)
1 3.

i = 1, ... , ki. Then D' is k-strongly connected.

Proof Immediate by Theorem 1 (see figure 1)).

Theorem 3 Two k-strong blocks B , B cannot have more than k-1 vertices
1 2

in common.

Proof Assume, by contradiction, that they have > k vertices in common,

v], ... , vh, h >_k (see figure 2).

~11
-- - .- k-

-
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Let x be any vertex of B and y be any vertex of B , while neither x nor y
2

is a common vertex vi, 1 <_ i < h. Then we claim that we cannot find a

vertex cut from x to y or from y to x of size < k.

Proof of claim: If we could, let S be the sot of vertices in the cut,

ISi < k. Let S, S, S be the intersections of S with V(B) - [U,

V(B) - (u, ... uh and ... , uh} respectively. Clearly IS I k,1

Is I < k, IS cI < k. By taking the set Sc out, at least one of the u. (call2 c

it u) remains in the digraph. x had > k disjoint paths to u and hence the re-

moval of S u S leaves at least one path from x to u. Similarly, the re-
1 c

moval of S v S leaves out at least one path from u to y. Similarly for
c 2

the direction y x. Hence the set S is not a cut set, which contradicts to

our assumption.

By using the just proved claim we remarY that B U B should be k-strongly

connected if h > k. But this contradicts to the maximality of each of them. QED.

Definition Let D be a digraph (V,E) and let S a V be a vertex set. With

<S> we denote the directed subgraph induced by S on D.

4 STRUCTURE AND ENUMERATION OF k-STRONG BLOCKS

such that D - S is not (one)-strongly connected.

The strongly connected components of D - S are denoted by <A >, ... , ýA >
1 m 'A

where m > 2.

Proposition 3 A minimum separating set has ISI k(D).

--•, .-- - -,-. . . --- •-- _ w... .. . . . ., •



Proof By theorem 1, at least k(D) vertices are needed to be removed to

disconnect two points x, r in at least one of the directions xy, yx.

Lemma 2 (Block separation lemma) Let S C V(G) be a minimum separating set of

the digraph D ('with <A> , ... , <As>, m > 2the strongly connected components
L

of D - <8>) and let k >_ k(D) + 1. Then each k-strong block of D is a k-strong

block of <Ai U S> for preclsely one ialue of i and each k-strong block of

<A U S>, V is a k-strong block of D.
i

Proof It is immediate for D not strongly connected. Let D be a stronqly

connected digraph with some minimum separating set S and let k > k(D) + 1.

Let B be a k-strong block of D. Since V(B) n S is not a separating set of

B and since IV(B)I > IS!, B must be a k-strong subgraph of precisely one

strongly connected component, <Ai US>, of D - S, B then is a subgraph of

precisely one k-strong block, B*, of <A, U S>, and B is then a k-strong
1

subgraph of D containing B. But B is maximal with respect to k-strong

connectivity in D. Hence B =B , so B is a k-strong block of <A. U S>.1

For any i, let B* be a k-strong block of <A. U S> with k > k(D) + 1.

B * then is a subgraph of some k-strong block B of D. Since B cannot be

separated by V(B) ri S we conclude that V(B) a V(<Ai U S>). Thus B is a,

k-strong subgraph of <Ai U S> containing B as a subgraph. By maximality
o * B*

of B we get B = B, proving the lemma. QED

Definition For n > 1 let w(D,n) be the number of k-strong blocks of D

for k > n. Define w(D) = w(D,l).

-- J
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It is obvious that, for a strongly connected D

w(D) = w(D,k(D)) I 1 + w(<A. US, k(D) + 1)

i--
(decomposition formula)

Lenma 3

w(D,n) < L.(2(V(D)-n) + l)/3J for 1 < n < V(D) - I

=0 for n > V(D)

Proof The verification of the above formula is obvious for complete D

and for D with IV(D)I < 3.

By induction, let it hold for all digraphs D with 1 < jV(D) I < j- 1

and let Dj be a particular noncomplete j-vertex digraph.

Let S be a minimum separating set of D with <A> ... , <Am>r m > 2, 1

the strongly connected components of D. - S.

Consider three cases depending on n and w (<Ai U S>, n).

(i) Suppose n > k (D.) + 1 and that there is one i ( {1, ... , m) such

that

w (<Ai U S>, n) =0 I
For k > n (from the block separation lemma) the k-strong blocks of D. are

precisely the k-strong blocks of D. - <Ai>.

Thus

w (Din) w ( <A.>, n)W ) = w( 1- A

-i



and since jV(D. -<A.>)I < j - 1, the inequality follows by the induction

hypothesis.

(ii) For n > k(D) + 1 for every digraph D, we have from the separation lemma

m

w (D,n) = w (<A U S>,n)
i=l

Let n > jSj + 1 = k (Di) + 1

Let also w(<A. U S>, n) > 1 V. = ., ... , mSi1 -- 1

Thus, IV(<A. U S>)[ >n + 1 V 1, ... , m

So

mI

w(D.,n) w(<A U S>,n) < ( I(2V(A US) 1-2nr+1)/3j

(by the induction hypothesis)

m

< tL(21v(A I + 21S! - 2n + 1)/3ji=l1

<L(2i + 2(m-1)ISI -2inn + in)/3j

< L2j - 2n + I)13], QED

(Note that 2(m-l))Sj - 2mn + m < 2 - m - 2n < -2n, since m > 2.)

(iii) Let n SiS = k(Dj) > 1

Then f<A. U (3>1 > n + 1 V. 1, ... , mi

So, by the decomposition formula of page 7 and by the induction hypothesis

I
,I
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m

w (D.,n) = 1 + w (<A,> U S, n + 1)J 2.
i=1

m

< 1 + LE ((2JAil + 21si - 2n- 1)/3)j

i=1

< 1 + L( 2 j - 2n - m)/3j'

< L2j - 2n + 1)/3J QED

Corollary

w(D) < max w(D,l) = L(2n - 1)/3]

jV(D)f = n

We now show that this upper bound is achievable.

Lemma 4 There exists a digraph D such that

w (D ) L(2n - 1)/3j
w

Proof Consider the following digraph D
w

v (D) ja,., a [1ýJ b, 1 . b c,.. c Ln/3J~

Let E (D) be the union of the following sets:

(a., a.) U (aj, ai)l 1 < i < j < L(n+2)/3J,

bjj, i 1 < i < j < L(n+l)/3j ,

c ,(c,. 1c<i <j < Ln/3J,

ij

* 'b'

-Lr/3j

A IN C (if b)I i Ln/j
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For any 1 < k < [(n-l)/3J , the subgraph

D - {b, ... , bk l , c ... , Ck_ is a k-strong block of

D and there are no other k-strong blocks for that value of k, except

trivial k-strong blocks.

We have also to count the k-strong blocks with no (k + 1)-strong

blocks inside. For n = 0 ,i (mod 3) the complete subgraphs

{bi, c., a , a, ...a} 1 <i < Ln/3j are the only kind of these

k-blocks. For n = 2 (mod 3) we have also to add the clique

{b +1 a , a 2 ... 2

So, the maximum number of the k-strong blocks with no (k+l)-strong blocks

inside is equal to - j-- for n > 2.

So the total number of k-blocks in D is
w

N [1 2for n >2

5 GIANT k-STRONG BLOCKS IN RANDOM GRAPHS

Theorem 5 For every 6 E(0,1), a > . and k > 0 there is a c(ka,F,)> 0

such that, for P > , the random digraph D with p > c has a k-strong-n '" n,p -- n

block of vertex cardinality > E.n with probability at least 1 - e

Proof Let D = (V,E) be an instance of D Let • be the event "0 has
n,p I

no k-strong block of cardinality _> 7n". Assume • be true on D. Construct
1

a digraph H with the k-strong blocks as vertices and an edge from the

U'
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k-strong block b to k-strong block b only if there i8 no vertex cutI 2

of size < k-i separating b from b to the direction b ÷ b (Note that
1 2 ± 2

at least one su,-h vertex cut, either to the direction b b or to b b exists,
12 2 1

and it is of cardinality < k-i.) Clearly H is acyclic and hence not

strongly connected. Let the set S be initially empty. Add to S the

k-blocks of D one-by-one, following the reverse topological order of

H. Each addition of a k-strong block to S, adds at most (k-i) vertices to

the border-set of S (being the set of the vertices of S having edges to

the outside of S) and at least one vertex to the rest of S (since each k-strong

block has at least k-vertices if it is no trivial) or causes the transformation

of a vertex of the border-set of S to a vertex of the rest of S. Thus,

at least 1/k of the vertices of S have no edges to the outside of S.
n

Continue the above construction, just until S has cardinality > e' where

S=min(e, 1-c). Then (by our assumption that • holds)

IIn ,
2 < ISI < £ + En

2

So, IS- B(S), > n
2k

where B(S) is the border-set of S.

Al so,

IV(D) - SI > n(l- c- 2 ) >0

Let A = S -B(S), B = V -S.

Then IAI > £ n, IBI > e-n

-1 '-1
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with -
1 2k

1 •
£ -i-£ -•--
2 2

and no edge exists from A to B.

This event's probability is bounded above by

E Prob {no edge from A to B1

all A,B

nCn nf
1 4 n (1) 12

-2

<_ (4 a-iC2c)n <_.e-
-Cc12

for p > £ and c > a+loge

and any ai> I.

So, Prob (16) < e QED.

6 k - STRONG BLOCKS OF DENSE RANDOM DIGRAPHS

This section considers random digraphs of the model D withn,p

>clog n
-- n

Theorem 6 For any constant integer k > 0 and any n and m < there are

2k

constants c(k), d(k) > 0 such that, the cardinality X of the biggest

log n
k-stronq block of the diqraph D with p > c(k) satisfies the

n,p -

proprety

Prob {X= n -m) < n-m.d(k)

[
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Proof Let D be an instance of D and let the event X = n-m be true inn,p

that instance. Let A be a k-strong block with IAI - X. For every

U £ V-A, at least one of the following two inequalities holds

(uv,) E E(D) V E A[ < k- 1 (*)

I(v,u) E E(D) V AE <k - 1 (**)

So, for at least one-half oz the vertices of V-A the same inequality

holds (either (*) or (**). This is so, since failure of both (*) and (**)

for u would imply that u E A by theorem 2. Without loss of generality,

let M be the property holding for > I of the vertices of V-A. Call the

set of these vertices U. 4
and VUEU {(u,v) E E(D) VE Al < k-l

Let A {v £ Al BuE U (u,v) E E(D)}

Then IA I < (k--.) U < (k-l) -m

Let A A - A. We get IA > n -m- (k-l)m
2 2

or A I > n -km.
2

Furthermore, there is no edge frow. U to A

Lb

Let e be the above event. Th.* probability of is bounded above by the
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n m (n kin) (m/2)

u(n,m) = 2 2I ) (-P)

(Note the way this upper bound is formed. We use n -km i since
Sn nnm X

is decreasing for x > 2- and n - km is the minimum value possible >

We have to use the minimum exponent of (l-p).

But 1-p < 1 - l since p > c log n
-- n -- n

'n m~
Aiso c < (k-l)m loge(n-) since (k-l)m < n___m

(n kn~ 2

m logn
Also < e since m <-- 2

Finally 1-c log n e-c log n Vn
SSo, u (n,m) <n-d (n'm)

c ( k -km (kl) o lg (n-m)
where di(n,m) m - m -(Im log

m - m- (k-l)m

c m-km (by our assumption)

> md(k) where d(k) = - k

Note that 0(k) > 0 iff c(k) > 4k

So

Prob n -m.d(k) QED.

Theorem 7 For any constant interger k > C and any n > k there is a

constant c(k) - 0 and a d(k) > o such thait the cardinality X of the biggest

k-strong block of the digraph D with p > c(k) sdtisfies the
n,p in

property

[ •
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Prob {X < n - log n} < 2n(l-lg n d(k))

Proof We have (by using theorem 6) kn-2k

I _n ~ -in-d(k)
that Prob flog n <_n- X < T}= n-mdk

m= log n

with d(k) = -(k k > 0 for c(k) > 4k4

So

Prob {iog n < n - X < < n •lg n' d(k)n

- log n '-(k)
<

Also, from theorem 5, and by using

E= , we get

- an
Prob n - X > < e

2kf

for any a>l and c(k) > a + log 4

1 2

and r 4-• k)

So, for
c(k) > max (4k, - e4) I

12

(or c(k) > 16k 3 )

I"I
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we get

Prob (log n < n -- an -log n d(k)

or 1-log n •d(k)

Prob {X < n - log n} < 2 n

for sufficiently large n.

QED.

NOTE
Theorem 7 says that, for p > c(k) l 2°-•he digraph D has an nnp

k-strong block with prob*l as n-w.

Theorem 8 For any constant integer k > o and n >> k there are constan's

c (k) > o, d k > such that the random digraph D with p > c(k)n,p n

is k-strongly connected with probability

> 1 - 2 n-d' (k)

Proof Let R = n - X, X = cardinality of the biggest k-strong block of

. By using theorems 5,6 and c(k) > 2 + max 4k, log4

1 3\with c c. = -- Z-k
1 Z 4k 2

we get that

c

Prob {I < R} < e + n 4
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Let d'(k) = (1-(c/4-k))(.-I). Then d'(k) >1 Ifor

(4 1  2t1 9 4

and

Prob{lh R} Vn n d M

2;d'(kMfor large n.

Hence

Prob{R =OJ > 1 - 2nd(k) QED

7. k-STRONG BLOCKS FOR IN'"ERMEDIATE EDGE DENSITIES

Let c/n-<p<c' (log n/n). We wish to study the k-strong connectivity

of this class of random digraphs.

Theozem 9. For iny constant k)0 and any m=-o(n) there is a constant

c (k) > 0 and a function t(n) >c (k)log n/m such that if p)t(n)/n

then if X is the cardinality of the biggest k-strong block of D
n,p

k
Pr-ob{.': < n - m} < n 0 as nt(n) (m/2)

e

Proof. Assume that in the instance D of D the cardinality X of
n,p

the biggest k-strong block satisfies the inequality X<n- m. Then we can

find two sets A,B (as in Preof of Theorem 6) such that IAI = 1/2 m,

IBI =n--km and no edge from A to B (or from B to A). This event

is above bounded by the probability I-q, where

A
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qu qProb{for every pair of disjoint sets AB of vertices of the

above sizes, there is at least one edge from A to B). We shall show

that q-l as n-*-. Let us enumerate all possible pairs of sets of

vertices of the above sizes. Call them

(A B) (A B ),,..*(Ag B

where

(}'" ) 2 1 = (1m ( 1 m1 m - km .1 m (k-l)m

We have by Baye's formula that

q - Prob{E(A,Bl) 0 A ... AE(Ag, Bg #0}

where E(AB) = set of edges from A to B.

So

q = Prob E(A IB11 @' Prob (E(AIBI)#0 ,.. nb g E(Ai'Bi)-iE0 01

1

We need the following enumeration lemma:

Lemma 5. For every two sets Ail Bi having at least one edge e from

A. to B., there are at least

(1 n -2)/n -2 - (mn-1))
1 - (k-l)m- I/

pairs of sets of sizes 1/2 m, n- km which also contain this edge.

a
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This lemma can be proved easily by taking cut the two vertices of e and

enumerating.

Corollary. There is a suitable enumeration of the sets in the q product

such that for every term i not equal to 1 the next (at least) g1  terms

(conditioned on the existence of an edge from A. to B.) will be equal1 2

to 1.

Hence the value of q is

glg1q > (Prob{at least an edge from A to BI}]

1

But

-9-as n 4-~ 0

(In fact
k

CL (n) as n+00.

Hence,
1 .s (n/rn)kq [l1- (l-p)gm nkn

l(n /rn)

or 
k

I" ~ (nkrn)1(m

SIJ/Pp P1 ] (n/mmk

q E [ll I

or k~~q e -(

or tlnlm
q~l - k

q e-m) Alx
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or

q 1 e-e n 1-n if c k) >2kk+4.

(Since 1/2 t(n)m>1/2 cl(k)log n> (k+2)log n only if cl(k)>2k+4.)

So#

2 k klogn,
SProb(X < n - m) < e• 0 as n*G*

for the above values of cl(k). QED

Corollary. For each k> O, the digraph D with p>c (k)/n has a
nl,p 1n~~p -[Cc (k) i/2-k]

k-strong block of cardinality > n- log n, with probability > I- n("k/ k

Proof. Just set m= log n and t(n)'c W(k) in the previous theorem.

3I

jI

t ,,~ ~- - . . ~ t.



APPENDIX

LEMMA 1. The minimum number of vertices separating vertex s from

vertex t in the direction s to t, is the maximum number of vertex

disjoint s to t paths.

Proof. (A variation of Dirac's Proof for a version of Menger's

Theorem.)

It is clear that if k points separate s from t then there can

be no more than k disjoint paths from s to t.

It remains to show that if it takes k points to separate s and

t (in the direction s÷ t) in the digraph D, then there are k disjoint

st paths in D. This is clearly true for k-= . Assume it is not true

for some k> 1. Let h be the smallest such k and let F be a digraph

with the minimiun number of vertices for which the theorem fails for h.

We remove edges from F until we obtain a digraph D' such that h

vertices are required to separate s,t (in the direction st) in D',

but for any edge x in D', only h- 1 vertices are required to separate

s,t in D1-x. Let us investigate properties of this D i.

By definition of D', for every x edge of D', there is a set S(x)

of h-i vertices separating s,t (in the st direction) in D'-x.

Now, D'- S(x) contains at least one st path, since it takes h

vertices to separate s,t in D'. Each such st path must contain the

edge x= (u,v) since it is not a path in D1 -x. So, u,v S(x) and

if u 0 s, uM t then S(x) U {u} separates s from t (in the st

direction) in D'.
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If there is a vertex w such that (s,w),(w,t) are edges in D',

then D' -w requires h- 1 vertices to separate s,t and so it has h-1

disjoint st paths. Replacing w, we get h disjoint st paths in D'.

So, we showed

(f) No such w exists in D'.

Let W be any collection of h vertices separating s from t (in st

direction) in D'. An sW path is a path starting at s and ending in

some w. E W and containing no other vertex of W. Call the collection of

all sW paths and Wt paths P5  and Pt, respectively. Then each st
path begins with a member of Ps and ends with a member of Pti because

every such path contains a vertex of W. Moreover, the paths in P and
s

P have the vertices of W and no others in common, since it is clear
t

that each w. is in at least one path in each collection and, if some

other vertex were in both an sW and an Wt path then therc would be an

st path containing no vertex of W. Finally, either P - W={s} or

P -W= {t} since, if not, then both P plus the edges {(wlt)(w ,t),...}
t S 2'

and Pt plus the edges {(s,w ),(s,w2),...} are digraphs with fewer
t1 2

verticee -han D' in which s,t are nonadjacent and h-connected and

there' gre in each there are h disjoint st paths. Combining the sW

and Wt portions of these paths, we can construct h disjoint st paths

in D', and thus have a contradiction. So

(II) Any collection W of h vertices separating s from t (to

the st direction) has the property: VuE W:

(s,u) is an edge

or (u,t) is an edge.

~ . .4t ~ ......* -.~ ... . *
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Now we complete the proof.

Let P={(s,u 1 ),(uU 2),...,(*,t)} be a shortest st path in D'

and let U1u2 =x. By (I), u2 t.

Form S(x)= {ulu 2,...,fh_1} as above, separating s from t in

D' x. By (I), (u.,t) 9 D' , so by (II)

with W=S(x) U{u we get (s,u.) D', Vi.

Thus, by (I), (uit) D', Vi. However, if we pick W= S (x) U {u2}

instead, we have by (II) that (s,u 2) E D', contradicting our choice of P

as a shortest st path. QED

.4

I
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